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Introduction 

There is no clearly set definition of curriculum. A naïve description might be that it is the 

content taught for a subject studied: a syllabus. It is tempting for teachers to only think 

about the subjects that they teach. However, it is important to consider the wider 

experience of the students, which ranges from the other subjects they study, to the 

institution’s tutorial and pastoral programmes, to the sort of food that is sold in the 

canteen. All these things contribute to the overall curriculum. It is also crucial to recognise 

the difference between the ‘planned’ and ‘received’ curriculum (Kelly, 2004). This addition 

includes the student experience as well as the teacher’s duty. A teacher might interpret 

what is written by an awarding body in their course specification, then deliver it in a certain 

way. Some detail or bias may be added or removed in this transformation, until the student 

eventually receives some interpretation of the original syllabus. By including the received 

curriculum in the definition, the way in which institutions and teachers choose to deliver a 

course can also be evaluated. 

This essay follows the curriculum delivered by a sixth form college in the south of England, 

hereafter referred to as ‘the college’. The precise aspect that is reviewed, analysed and 

evaluated is Computer Science A-level. Of course, it is still important to consider the wider 

curriculum that this programme sits within. The most popular companion courses are 

Mathematics and Physics, with 68% and 40%, respectively, of students enrolled for 

Computer Science also studying them at A-level.  

Curriculum Design 

The planned curriculum at the college follows the AQA Computer Science A-level 

specification. This contains a comprehensive list of subject content to be taught, as well as a 

clear description of how the course is to be assessed (AQA, 2019). The specification is not a 

completely original creation by AQA; its synthesis is part of a chain of documents produced 

for the A-level course, which undergo regular review and revision. The basic expected 
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outcomes of assessment are “set by Ofqual and are the same across all AS and A-level 

Computer Science specifications and all exam boards” (AQA, 2019, p.112). These 

assessment objectives (AOs) are used by awarding bodies like AQA when designing 

assessment criteria. Together, they cover Bloom’s taxonomy of learning: AO1 covers 

‘knowledge’ and ‘comprehension’; AO2 covers ‘application’ and ‘analysis’; and AO3 covers 

‘synthesis’ and ‘evaluation’ (Bloom, 1956; Ofqual, 2014). Ofqual restrict the weightings for 

each of the AOs to 30-40%. They also enforce that A-level courses must not be assessed 

more than 20% by coursework, with the remaining proportion taken up by examinations 

(Ofqual, 2014). Course specifications must follow the aims, subject knowledge and skills set 

out by the Department for Education (2014). However, this guide is brief and the full AQA 

specification goes into much more detail. 

One of the most prominent theoretical models of curriculum development from the last 

century is the ‘product’ model. Its main innovators were: Ralph Tyler, who believed that the 

successes of education could most effectively be measured when the expected outcomes 

were initially defined; and Bloom (1956), who scientifically categorised types of aims and 

objectives (Kelly, 2004). With this model, it is first decided what behavioural objectives 

constitute ‘success’, followed by formulation of a bank of content, skills and activities to 

achieve these objectives. Then, there is emphasis on learners being assessed against them 

to determine their level of success (Smith, 2000). 

At the highest level, UK state education unambiguously follows a product model, and this is 

no different for Computer Science A-level. The explicit “Aims and Objectives” outlined by 

government show that behavioural objectives are at the root of the curriculum 

development process (Ofqual, 2014; DfE, 2014). At the course specification level, there is a 

large set of facts which students are expected to know and understand. If students can 

recall the facts correctly, they will be successful (AQA, 2019). There is also a significant skills 

element in the course, which includes “a minimum of 10% mathematics” (DfE, 2014, p.3) 
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and an element of computer programming. Students are expected to have a pre-defined 

level of competence in these skills in order to be successful. 

A key advantage of the objectives-based approach is that the students can be objectively 

assessed. Crucially, this makes the outcomes of students comparable, which is favourable to 

recruiting employers and institutions of further study. For example, FE institutions should be 

able to assume prerequisite knowledge or competence based on a threshold of attainment 

at GCSE. Similarly, universities should be able to assume what a student with an A* grade in 

Mathematics A-level should know and be able to do. This should allow these institutions to 

be fairer in their admissions processes, and to design their own curricula based on a 

common starting point in order to waste less time with students learning content twice. Of 

course, the situation is never so perfectly streamlined. Although students may be fairly 

assessed, there is no guarantee that relevant knowledge and skills are captured. Also, the 

recent UK A-level reforms have led to fewer terminal examinations, which cannot 

realistically assess the entire body of content in the course syllabus.  

Another identified limitation is that it can inhibit the freedom and creativity of both 

teachers and students. Students get little say in what they learn about, because the set of 

expected outcomes is already defined. Also, “it turns educators into technicians” (Smith, 

2000), whose role is to deliver a course that has been largely already planned for them. In 

Computer Science, there is so much content for teachers to cover that very little time is left 

for personalising the curriculum based on their own or their students’ interests. 

The largest criticism of the product model is that it does not acknowledge learning for 

learning’s sake. It exists only for utilitarian purposes, to give students the knowledge and 

skills required to be effective workers who contribute positively to the economy. The view 

of Kelly (2004, p.68) is that this is “leading to a lowering of educational standards whatever 

it seems to be achieving in terms of its own spurious statistics”. This is to say that league 

tables and measures used to evaluate student, teacher, institution and subject success are 
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fabricated by the product curriculum and serve no true ‘educational’ purpose. This sort of 

view led to a different way of approaching curriculum design, called the ‘process’ model. 

This model disregards prescriptive behavioural objectives and focuses more on the means 

rather than the ends of education. It lends less importance to the exact content that should 

be delivered, and instead recognises intrinsic value in the processes by which content is 

experienced by students (Smith, 2000).  

There are aspects of the planned curriculum which appear to follow the process model. One 

of these is the skill of computer programming as a theme throughout the course. Although 

students are examined and assessed in their competence at programming, it is seen as 

something which students learn to appreciate as a tool for solving problems.  Another idea 

that is central to the Computing curriculum at all levels is ‘computational thinking’: “an 

approach to solving problems, designing systems and understanding human behaviour that 

draws on concepts fundamental to computing” (Wing, 2008, p.3717). This is a “key process” 

and “something that a pupil of Computer Science should be able to do” (CAS, 2012, p.9). 

Although computational thinking is prescribed as a behavioural objective of the A-level 

curriculum, the idea is certainly more in line with the process model. This is because it 

ignores the exact problems which are to be solved and focuses instead on practising a broad 

process by which to solve any problem. Flexibility is left to both teachers and students to 

decide on appropriate examples of problems to tackle using the process. This focus is very 

good because today’s A-level needs to prepare young people for a technological future with 

jobs, systems and problems which do not exist yet. 

Perhaps the most relevant limitation of the process model is that it is not designed for a 

‘product’ desire to be bound by a cage of assessments. In the current UK education system, 

examinations are unfortunately necessary. This is an issue because the process model “can 

never be directed towards an examination as an objective without loss of quality” 

(Stenhouse, 1975, p.95). Despite the best intentions of curriculum planning to encourage 
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computational thinking, there undoubtedly is a loss of accuracy due to primarily gearing 

students towards terminal A-level examinations and minimal coursework. This is because 

“grades are attainable without understanding” (Stenhouse, 1975, p.96). 

It is important to recognise how A-level Computer Science sits between lower and higher 

levels of study. Recently, there has been significant government reform to the Computing 

curriculum below FE, with ‘Computer Science’ being brought into the suite of GCSEs and the 

National Curriculum. With fundamentals now being taught from Key Stage 1, it is the 

government’s hope that “a high-quality computing education equips pupils to use 

computational thinking and creativity to understand and change the world” (DfE, 2013, p.1). 

The aims of the GCSE and A-level are virtually identical, and the apparent level of difficulty 

in content is higher for the A-level. (DfE, 2013; 2015; 2014).  

The recent reforms aim to transform Computing into a ‘spiral curriculum’. At A-level, it is 

even made explicit that “all specifications in computer science must build on the knowledge, 

understanding and skills established at key stage 4” (AQA, 2019, p.111). A spiral curriculum 

cyclically revisits a subject at increasing levels, each time building on the previous level 

(McKimm, 2007). This is a good thing since, as with the more traditional sciences and 

mathematics, Computer Science cannot simply be understood after a 2-year A-level course. 

However, the current state of low take-up at GCSE and A-level means that the transitions 

into and out of A-level are disjointed. FE institutions cannot set a prerequisite entry 

requirement of GCSE Computer Science because not enough schools offer it. Setting such 

expectations would disadvantage students unable to study the subject well at school. An 

identical issue exists for HE admissions onto Computer Science degrees. The conflict 

between expectations for learners in the planned curriculum and the reality of the learner 

profiles in the A-level classroom must cause problems. If expected outcomes assume the 

existence of a functional spiral curriculum but some learners are taught from scratch at each 

level of the ‘spiral’, there undoubtedly must be an impact on the attainment of those 
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outcomes. At the college, and nationally, significantly lower than average grades are 

achieved in A-level Computer Science qualifications (JCQ, 2018). This is not necessarily an 

indication of underperformance because of the way grade boundaries are moderated by 

Ofqual. However, the problem still exists for those learners who are not lucky enough to 

progress as planned through the spiral curriculum. 

Curriculum Evaluation 

The course specification is just one part of Computer Science A-level. At the college, 

decisions are made about how to deliver the formal specification, from structuring topics 

into a scheme of work down to planning individual lessons and activities. Since this part of 

the curriculum is very much under the control of the college, there is scope to self-evaluate 

the effectiveness of these decisions. In doing so, plans can be drawn up for improving the 

quality of the ‘received’ curriculum. At the college, Computer Science is not a standalone 

course, but part of a much larger ‘Maths and Computer Science’ department, which itself is 

one of eleven departments. Perhaps non-intuitively, it makes more sense for Computer 

Science to be grouped with Mathematics than with IT. This is because “Computer Science is 

a quintessential STEM discipline” (CAS, 2012, p.4). The self-assessment policy of the college 

involves every department producing a Self-Assessment Report (SAR) and resulting Quality 

Improvement Plan (QIP) (College, 2018b). The SAR for Maths & Computer Science makes 

reflective comments on the state of the subjects within the department (Maths A-level, 

Further Maths A-level, Maths Studies Cert., Maths GCSE and Computer Science), 

highlighting key strengths as well as areas for improvement. These comments are based on 

various quantitative and qualitative evaluative tools. The efficacy of this process at the 

college is to be analysed against Kirkpatrick’s four-level theory of evaluation. Although this 

model was initially developed for application in adult training contexts, its flexibility means 

that it can be applied to educational curricula too (Naugle et al., 2000). It is worth 

recognising that this evaluative model is designed to suit a product-based curriculum; “What 

topics should be presented to meet the needs and accomplish the objectives? The answers 
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to this question establish the topics to be covered” (Kirkpatrick & Kirkpatrick, 2006, p.9). 

Since the method of evaluation can often shape the curriculum itself (Kelly, 2004), there 

would be a danger if using Kirkpatrick’s model for the more process-based elements of the 

curriculum, such as computational thinking or computer programming. It should not 

necessarily be a set of hard rules to aim towards, but more of a guide. 

The first level looks at the personal reactions of participants (Kirkpatrick & Kirkpatrick, 

2006). One important evaluative tool used by the department is an annual multifaceted 

review called the ‘3D Review’. In 2018/19, it aimed to analyse the efficacy of part of the 

department’s QIP at the time, which focused on improving results of low prior achievers. 

The review included teacher peer-observation and student voice. One conclusion from the 

student questionnaires was that there needed to be a revision of the way weekly 

assignments worked. The use of student voice here was in line with Level 1: ‘Reaction’. 

Although it did not evaluate the students’ learning, it did give an indication of whether the 

structure of the programme worked for them. 

After ascertaining the reaction of students to the course, the second level involves 

evaluating the “extent to which participants change attitudes, improve knowledge, and/or 

increase skill” (Kirkpatrick & Kirkpatrick, 2006). In an educational context, this is usually 

judged through assessment. At the weekly level at the college, students are given brief ‘Key 

Assignment Reviews’, which aim to gauge students’ knowledge and skills studied in the 

previous week. The length and effectiveness of these were discussed in one of the 3D 

Review meetings. Students are also set weekly homework for them to assess their own 

knowledge. However, most homework is self-marked, as students are given answers along 

with the questions. A danger here is that some students use the answers as a crutch when 

completing homework and are not getting the ‘desirable difficulty’ of forced retrieval that 

has been shown to contribute towards better learning. Bjork & Bjork (2011, p.61) describe 

“the generation effect, which refers to the long-term benefit of generating an answer, 
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solution, or procedure versus being presented that answer”. A related danger is that 

teachers do not receive a consistent, reliable measure of student learning, which hinders 

fine-grained evaluation at the ‘Learning’ level.  

The ultimate assessment of learning at the college uses final A-level grades. Apart from the 

3D review, the other main evaluative tool is aggregate data on course entries, retention and 

achievement. In 2017/18 there were “too few A*s in [Computer Science], too many D/E 

grades” (College, 2018a). The proportion of students achieving A*-B was 37%, compared 

with a departmental A-level average of 57%. On the surface this looked like poor 

performance and the self-assessment seemed to conclude that the teachers were 

responsible. However, the national average equivalent figure was 39% (JCQ, 2018). It is 

therefore important to compare college figures to local and national benchmarks. 

Another way to produce comparable aggregate data is to look at the ‘value added’ by the 

curriculum using the Alps system. Courses receive Alps grades between 1 and 9, which 

indicate where that course places in the national rankings for adding value to students. The 

attraction to Alps is firstly due to not being penalised for taking on low-achieving students. 

However, perhaps the biggest selling point for Alps is that it gives an extremely simple grade 

that can be compared year-on-year to see the progression of a course. At the college, Alps 

indicated that there were no significant overall concerns that the high-grades rate had 

implied; Computer Science had “largest ever intake, Alps still at 5” (College, 2018a). An Alps 

grade of 5 meant the course was roughly at the 50th percentile of the National Benchmark: 

it was on par with the average (Alps, 2019). 

All departmental SARs are collated, and overall strengths and weaknesses are identified in 

the college SAR. For example, the 2017/18 value-added data showed that boys made 

significantly worse progress compared with girls (College, 2018b). However, this was not the 

case for Computer Science, where the boys achieved Alps 5 compared with 6 for the girls 

(College, 2018a). This shows that there is value in self-assessment at both the department 
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and college level. The department is focusing on gender success rates as a means of 

evaluating Equality & Diversity aspects of course provision. “Boys and white students 

outperform their counterparts.  This is something we are working on changing” (College, 

2018a). There is nothing in the formal Computer Science specification which explicitly 

challenges gender stereotypes (AQA, 2019), so such challenges must come as teacher inputs 

into the curriculum. However, what should be of larger concern is that the number of girls 

on the course is pitifully low, with only 13% of new students in 2018/19 being female. 

Perhaps the curriculum is failing to recruit enough young women. Regardless, more needs to 

be done to encourage female recruitment to the programme. Although this is a systemic 

issue which may appear from a young age, FE still has responsibility for encouraging more 

girls to choose Computer Science as an A-level. 

There is no doubt that discussing the value added by a college’s curriculum is much more 

meaningful than simply comparing attainment metrics such as high-grades. However, with 

such a large emphasis on Alps at the college, there is a significant danger that it overlooks 

some of the oversimplifications that Alps can make. The main underlying assumption of Alps 

is that students with higher entry profiles are expected to achieve higher A-level grades. 

Minimum Expected Grades (MEGs) are generated for each student based on their GCSEs. 

Alps grades are calculated by taking the average difference between actual A-level results 

and MEGs for students in the dataset, then comparing this average to national benchmarks 

(Alps, 2019). The crucial oversimplification here is that a student’s MEG is based on all their 

GCSEs and is the same regardless of which courses they take at college. Analysis of the 

college’s Computer Science results from 2014-2018 shows that the Product Moment 

Correlation Coefficient between average GCSE grade and actual grade is 0.55. This score 

would generally be accepted as a moderate correlation for human data, but certainly not a 

strong one. It implies that Alps MEGs and, consequently, Alps course grades should not be 

relied upon wholly for Computer Science. Another big issue with Alps is that, if all 

institutions were to make equal improvements to their student progress, there would be no 
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change in the Alps grades. For a course to achieve a better Alps grade next year, similar 

courses at other institutions must make relatively slower improvement. The inherent 

competition in the system could be discouraging institutions from working collaboratively to 

improve the country’s overall education system. 

Kirkpatrick’s third level is ‘Behaviour’. In the training context, this involves the transfer of 

learning to the workplace (Kirkpatrick & Kirkpatrick, 2006). In education, this could be the 

application of transferable skills to future learning. The SAR talks of the department’s “focus 

on encouraging student independent study skills and ways to develop these” (College, 

2018a). Termly assessments offer an indication of the longer-term progress of attitudes to 

study like this. However, these assessments do not directly measure the intended 

behaviour. Instead, the department tracks the weekly submission of homework from each 

student and chases up any non-submission using an agreed procedure. The 2018 SAR 

reported that teacher implementation of this strategy was not sufficiently consistent but 

aimed to improve on this in the future. 

The fourth stage is ‘Results’: whether the curriculum has ‘worked’ in the end, both for 

students and teachers. Alps and achievement rate measures are nationally standard tools 

for evaluating the effectiveness of a curriculum. However, what should be of more 

importance is evaluating how well students are prepared for the next stage after college. 

The college keep track of university destinations and alumni graduate results (College, 

2018b) but there is no apparent evaluation of the success of employability programmes. The 

department even admits that “we do not have a strong policy on employability” (College, 

2018a). Unless the college believe that HE, which only 68.9% of students attend, is the only 

successful outcome, they could be doing more to evaluate how well they prepare students 

for work. 

Without measuring the employability ‘results’ of leavers, there is no way to meet 

Kirkpatrick’s fourth level for evaluating the efficacy of this area. However, even if the 
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curriculum is preparing students for work in Computer Science, there may be signs to 

suggest that the curriculum itself is influencing the technology industry for the worse. 

Leading technology professionals are under increasing global scrutiny for the ways in which 

their business decisions could have a negative impact on society. The government is pushing 

for regulation of products like social media, artificial intelligence, driverless cars and 

targeted political advertising. Chair of the DCMS committee, Damian Collins, was quoted 

talking about 

“issues that the major tech companies are well aware of, yet continually fail to address. The 

guiding principle of the 'move fast and break things' culture seems to be that it is better to 

apologise than ask permission.” 

(Wakefield, 2019) 

These issues could be perpetuated by the utilitarian development of the Computer Science 

(and wider STEM) curriculum. The heavy ‘product’ nature of content and right-or-wrong 

nature of assessment could be encouraging a black-and-white hidden curriculum of 

‘innovate before thinking’. There is mention of the ethical and social consequences of 

technology in the curriculum content, although it seems like an afterthought rather than a 

change of “guiding principle” (DfE, 2014). At the undergraduate level, these issues are also 

drowned out by other content (ACM, 2013; QAA, 2016). Given the government’s recent 

concerns with the technology industry, it should be making curriculum change at all levels 

one of its priorities to address this issue. 

Conclusions 

By placing Computer Science A-level alongside two of the biggest theories of curriculum 

design, it seems that the ‘planned’ curriculum primarily follows an objectives-based model, 

with some process-based aspects that struggle to fit inside strict national assessment 

frameworks. Although it is intended to be part of a spiral curriculum, the current teething 
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problems with provision of the subject mean that over-ambitious incremental objectives 

cannot be met by all learners. 

The evaluation framework at the college is strong, although there needs to be significantly 

more attention given to self-assessment reporting and quality improvement of the 

Computer Science ‘received’ curriculum, especially given its current trend of growth (45% 

growth in 2018/19 intake). The 2017/18 3D review only looked at Maths and Further Maths 

A-levels. This was probably because A-level Mathematics was, and still is, by far the largest 

course in the department. Nonetheless, there is no other framework for documenting 

evaluation in Computer Science. The department should also decide how to take part in a 

national drive to increase female numbers, and the department and college should develop 

a deeper evaluation of the success of their employability duties, perhaps including tracking 

employment destinations of leavers. 

The government has been increasingly noticing ethical and social issues overlooked by 

technology companies and Ofsted has been building its new inspection framework for 2019 

(Ofsted, 2019). Since “inspection procedures control and determine the nature of the 

curriculum offered” (Kelly, 2004, p.128), it will be interesting to see where the government 

and its regulatory powers take the Computer Science curriculum in the coming years.  
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